воскресенье, 23 декабря 2012 г.

Конические сечения


Название этих кривых предложил один из крупнейших геометров древности Аполлоний Пергский, посвятивший замечательным кривым трактат из восьми книг «Конические сечения» («О кониках»). Первые четыре книги содержат начало теории и основные свойства конических сечений. Это — трактат об эллипсе, параболе и гиперболе, определяемых как сечения кругового конуса, где изложение доведено до исследования эволют конического сечения.

Аполлоний показал, что кривые можно получить, проводя различные сечения одного и того же кругового конуса, причем любого.
При надлежащем наклоне секущей плоскости удается получить все типы конических сечений. Если считать, что конус не заканчивается в вершине, а проектируется на нее, тогда у некоторых сечений образуется две ветви.
Одним из первых, кто начал изучать конические сечения — эллипс, параболу, гиперболу, был ученик знаменитого Платона, древнегреческий математик Менехм (IV в. до н. э.). Решая задачу об удвоении куба, Менехм задумался: «А что случится, если разрезать конус плоскостью, перпендикулярной его образующей?» Так, изменяя угол при вершине прямого кругового конуса, Менехм получил три вида кривых: эллипс — если угол при вершине конуса острый; параболу — если угол прямой; одну ветвь гиперболы — если угол тупой.

Комментариев нет:

Отправить комментарий